Congestion Mitigation & Air Quality (CMAQ)
FY2025-2028

Project Selection Process

(TTAC Meeting March 8th, 2023)

Congestion Mitigation & Air Quality Program Purpose

- ➤ A federally funded reimbursement program that provides funds for projects that reduce traffic congestion & improve air quality
- ➤ Eligible projects & programs include those which would result in emissions reductions and air quality benefit
- ➤ Are likely to contribute to the attainment of national ambient air quality standards

NRPC 2025-2028 CMAQ Project Evaluation Timeline			
Date	Description		
September 26, 2022	Application Cycle Announced		
November 4, 2022	Letters of Interest due @ NHDOT		
December, 2022	Mandatory Workshop		
January 6, 2023	Completed applications due @ NHDOT		
February 8, 2023	NRPC TTAC meeting to introduce process, Appoint Evaluation Subcommittee, & host Applicant Presentations		
February 15, 2023	NRPC MPO meeting to introduce process		
Jan 30 - Feb 17	NRPC conducts Air Quality Analysis for Submitted Projects		
February 24, 2023	Evaluation Committee completes intial scoring		
March 6, 2023	Evaluation Committee meets to Develop an Initial Prioritization Recommendation		
March 8, 2023	NRPC TTAC Reaches Consensus on CMAQ Priorities for NRPC MPO Consideration		
March 15, 2023	NRPC MPO Considers TTAC Recommendation & Reaches Consensus on CMAQ Priorities to be Submitted to NHDOT		
March 24, 2023	Regional CMAQ Priorities Due to NHDOT		

Current Round of Funding

- > Approximately \$30 million total funds available.
- ➤ 45 applications received (statewide)
- > Approximately \$45 million requested (statewide)
- > 6 funding proposals in the Nashua region
- > Approximately \$7.3 million

" ... NHDOT is prepared to move forward with the 24 non-EV applications immediately. Based on the total requests for these projects, NHDOT believes that all of them can be accommodated without the need to prioritize at the RPC/MPO level."

-NHDOT

PROJECT SUBMISSIONS

- 1) Amherst: Baboosic Greenway Expansion
- 2) *Nashua: Electric Vehicle (EV) Charging Station Installation
- 3) Nashua: Traffic Coordination Upgrades and Optimization
- 4) NRPC: NTS Service Expansion Nashua to Milford
- 5) *ReVision Energy: Electric Vehicle (EV) Charging Station Installation
- 6) Wilton: Pedestrian Bridge Connecting Riverside Way and Howard St.

*NH DOT states that EV project submissions are to be placed on hold until further notice. This means all other projects that meet CMAQ emissions reduction requirements are eligible for funding without scoring. These projects will be revisited and assessed for air quality improvement potential at a later date.

PROJECT SUMMARIES

APPLICANT	PROJECT	CMAQ CATEGORY	FED FUNDING	MATCH	TOTAL COST
Amherst	Baboosic Greenway	Bike/Ped Improvements	\$1,221,600	\$305,400	\$1,527,000
Nashua	EV Charging Stations	EV Charging Infrastructure	\$484,000	\$121,000	\$605,000
Nashua	Traffic Optimization	Traffic Signal Synchronization	\$2,200,000	\$550,000	\$2,750,000
NRPC	NTS Route Expansion	Transit Service Expansion	\$960,000	\$240,000	\$1,200,000
ReVision	EV Charging Stations	EV Charging Infrastructure	\$1,552,660	\$388,165	\$1,940,825
Wilton	Pedestrian Bridge	Bike/Ped Improvements	\$880,000	\$220,000	\$1,100,000
		Total	\$7,298,260	\$1,824,565	\$9,122,825
		Total Minus EV Projects	\$5,261,600	\$1,315,400	\$6,577,000

FHWA CMAQ EMISSIONS CALCULATOR TOOLKIT

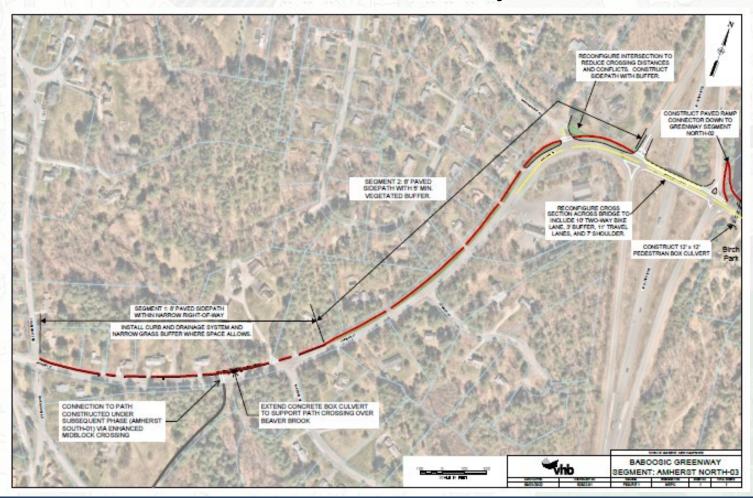
APPROVED BY NH DOT FOR ASSESSING AIR QUALITY IMPACT

"The Federal Highway Administration (FHWA) Office of Natural Environment developed a series of tools to provide technical support and resources for the implementation of the Congestion Mitigation and Air Quality Improvement (CMAQ) Program"

-Federal Highway Administration

FHWA CMAQ EMISSIONS CALCULATOR

Bicy	cle and Pedestrian Im	provements	
shift from passenger vehicles to bicycli	on in emissions resulting from improvements to bi ng or walking, including but not limited to sidewalk ck crossing installations, bike share systems, and b	s, dedicated bicycle infras	tructure, improved wayfinding,
	INPUT		User Guide
(1) What is your project evaluation year?	-Select from list -		Reset Interface
Daily Passenge Before (3a) Select the data type used for enterin Trip Distance Sourc - Select from list -	After Change g the typical one-way trip distance of passenger vehicles bel	ow: ution" above, enter the typical	distribution of one-way trip distances Sum
	OUTPUT		Calculate Output
EMISSION REDUCTIONS	Dellutent	Total	
	Pollutant Carbon Monoxide (CO)	0.000 Total	its in kg/day unless otherwise noted
	Particulate Matter <2.5 μm (PM _{2.5})	0.000	
	Particulate Matter <10 µm (PM ₁₀)	0.000	
	Nitrogen Oxide (NOx)	0.000	
	Volatile Organic Compounds (VOC)	0.000	
	Carbon Disside (CO.)	0.000	
	Carbon Dioxide (CO ₂) Carbon Dioxide Equivalent (CO ₂ e)	0.000	
	Total Energy Consumption (MMBTU/day)	0.000	



FHWA CMAQ EMISSIONS CALCULATOR

OUTPUT				
EMISSION REDUCTION	DNS			
	Pollutant	Total	*Units in kg/day unless otherwise noted	
	Carbon Monoxide (CO)	0.000		
	Particulate Matter <2.5 μm (PM _{2.5})	0.000		
	Particulate Matter <10 μm (PM ₁₀)	0.000		
	Nitrogen Oxide (NOx)	0.000		
	Volatile Organic Compounds (VOC)	0.000		
	Carbon Dioxide (CO ₂)	0.000		
	Carbon Dioxide Equivalent (CO ₂ e)	0.000		
	Total Energy Consumption	0.000		

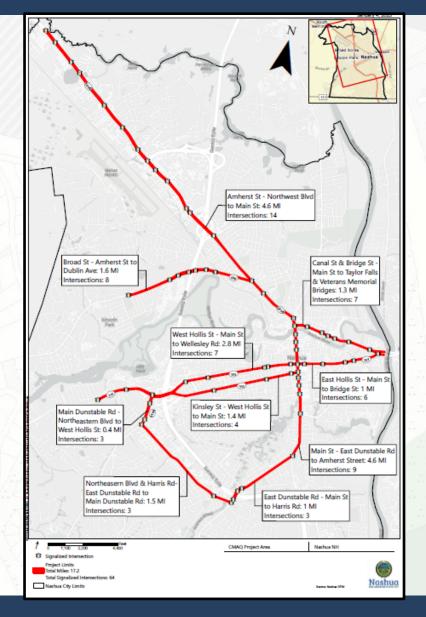
AMHERST Baboosic Greenway

AMHERST

Bicycle and Pedestrian Improvements

This calculator will estimate the reduction in emissions resulting from improvements to bicycle and pedestrian infrastructure and associated mode shift from passenger vehicles to bicycling or walking, including but not limited to sidewalks, dedicated bicycle infrastructure, improved wayfinding, mid-block crossing installations, bike share systems, and bike parking improvements.

User Guide **INPUT** Reset Interface (1) What is your project evaluation year? 2025 (2) Estimate the shift in daily motorized passenger vehicle trips to non-motorized travel due to the bicycle and pedestrian project. Daily Passenger Vehicle Trips Before After Change 8000 7985 15 (3a) Select the data type used for entering the typical one-way trip distance of passenger vehicles below: **Trip Distance Source** <- Fill National Values Average (3b) If you selected "Average" above, enter the typical one-way trip distance. If you selected "Distribution" above, enter the typical distribution of one-way trip distances. Typical Trip Distance Distribution of Trip Distances (daily fraction per mileage bin) (miles one way) x<1 1≤x<2 2≤x<3 3≤x<4 4≤x≤5 Sum 0.68


AMHERST

Baboosic Greenway: Bicycle and Pedestrian Improvements

OUTPUT		
Pollutant	Total	
Carbon Monoxide (CO)	0.041	
Particulate Matter <2.5 μm (PM _{2.5})	0.000	
Particulate Matter <10 μm (PM ₁₀)	0.000	
Nitrogen Oxide (NOx)	0.002	
Volatile Organic Compounds (VOC)	0.002	
Carbon Dioxide (CO₂)	3.874	
Carbon Dioxide Equivalent (CO₂e)	3.912	
Total Energy Consumption (MMBTU/day)	0.052	

NASHUA
Traffic Signal
Upgrades and
Optimization

NASHUA

Traffic Signal Synchronization

This calculator will estimate the emission reductions resulting from synchronizing the traffic signals along a previously unsynchronized corridor.

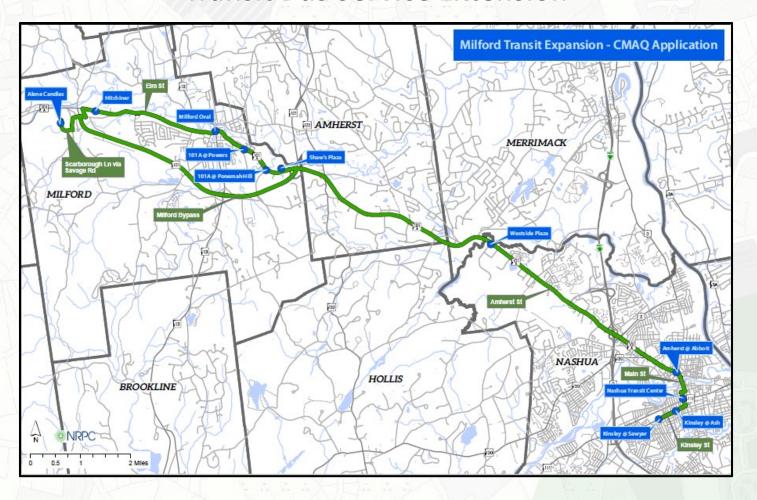
INPUT User Guide **Evaluation Year** 2025 Area Type Urban Corridor Length miles 1.3 **Number of Signalized Intersections** 7 Number of Lanes (one direction) 1 Posted Speed Limit 30 miles per hour (1 - 75 MPH) Average Cycle Length 90 seconds 6% Truck Percentage Annual Average Daily Traffic (AADT) (both directions) 9,729 veh/day Peak-hour Volume (both directions) veh/hr 747 Existing Corridor Travel Time 4 minutes Total peak hours per day (AM+PM) 4

Reset to Default Values

NASHUA

Traffic Optimization: Traffic Signal Synchronization

OUTPUT Calculate Output PERFORMANCE PEAK-HOUR **OFF-PEAK** Volume (both directions) 747 337.05 veh/hr **Existing Average Speed** 20 19 mph 32 28 min Travel Time Savings Proposed Average Speed 22 21 mph **EMISSION REDUCTIONS** Peak-hour Off-Peak Total **Pollutant** Kilograms/day Kilograms/day Kilograms/day Carbon Monoxide (CO) 1.024 2.532 3.556 Particulate Matter < 2.5 µm (PM_{2.5}) 0.007 0.018 0.025 Particulate Matter <10 µm (PM₁₀) 0.028 0.071 0.099 Nitrogen Oxide (NOx) 0.1230.303 0.426 Volatile Organic Compounds (VOC) 0.036 0.089 0.125Atmospheric Carbon Dioxide (CO2) 309.131 89.507 219.624 Carbon Dioxide Equivalent (CO2e) 90.141 221.226 311.367 Total Energy Consumption (MMBTU) 1.176 2.886 4.062


NASHUA

Traffic Optimization: Traffic Signal Synchronization

Pollutant				
	Peak	Off Peak	kg/day	kg/year
Carbon Monoxide (CO)	20.223	34.746	54.969	20063.8
Particulate Matter <2.5 μm (PM _{2.5})	0.179	0.328	0.507	185.0
Particulate Matter <10 µm (PM ₁₀)	0.808	1.542	2.350	857.7
Nitrogen Oxide (NOx)	3.049	5.450	8.499	3102.2
Volatile Organic Compounds	0.904	1.622	2.526	921.9
Atmospheric Carbon Dioxide	2,248.386	4,038.409	6,286.795	2294680.2
Carbon Dioxide Equivalent	2,264.119	4,066.714	6,330.833	2310754.2
Total Energy Consumption	29.553	53.092	82.645	30165.5

NRPC Transit Bus Service Extension

NRPC

Transit Bus Service and Fleet Expansion This calculator will estimate the reduction in emissions from projects which expand transit bus service and fleets, including new routes, new schedules, and new vehicles. Emissions reductions are associated with the mode shift from passenger vehicle to transit activity. Users are recommended to forecast activity by mode with an external travel demand model. **INPUT** User Guide Reset to Default Values (1) What is your project evaluation year? 2025 (2) Please input the number of days that the 260 Note: Default is 365 days per year. bus service is operated annually For weekdays only, enter 260 days per year. For weekends only, enter 105 days per year Transit Bus Information (3a) Enter the estimated vehicle miles traveled annually by the transit buses before and after the transit project is completed. Before After Transit Bus Miles Traveled 141.960 Miles (3b) Enter the VMT allocations of your transit bus fleet on the separate tabs before and/or after project completion. If desired, default national average distributions can be used to fill these tables. Transit Bus Model Year Distribution Allocations of Model Years Transit Bus Fuel Type Distribution Allocations of Fuel Types Allocations of Road Types Transit Bus Road Type Distribution

NRPC Transit Bus Service Extension

Passenger Vehicle Information (4a) Enter the annual passenger vehicle activity information before and after the project. Annual passenger vehicle activity can be entered either in terms of vehicle miles traveled, or number of passenger trips diverted. The passenger vehicle average one-way trip distance should be entered in miles. Passenger Activity Type Passenger Vehicle Activity Passenger Vehicle Miles Traveled Type Passenger Vehicle Trips Before After 24,960 Passenger Vehicle Activity Trips Average One-Way Trip Distance 21.00 Miles Note: National Default value is 4,52 Linked Passenger Vehicle Trips (4b) Do you expect most passenger vehicle Yes, passengers will drive to transit hubs to use the expanded transit bus service or fleet. trips to be linked with bus trips as a result of No, the expansion will eliminate full passenger vehicle trips (reduction of running and start activity). the service or fleet expansion?

NRPC Transit Bus Service Extension

ACTIVITY ALLOCATIONS

User Guide

(1) Enter the model year distribution of transit bus activity before and/or after completion (fractions for each distribution/column must sum to 1^{\bullet}).

(2) Use the button below to fill the table with national defualt model year distributions if desired. These distributions are specific to the year input on the "Transit Bus Service & Fleet Expansion" Tab.

Set to National Default Values

Update Emission Results

Clear Inputs

Model Year	Age	Fraction Before	Fraction After
2025	0		
2024	1		
2023	2		
2022	3		
2021	4		
2020	5		
2019	6	1.0000	1.0000
2018	7		
2017	8		
2016	9		
2015	10		
2014	11		
2013	12		
2012	13		
2011	14		
2010	15		
2009	16		
2008	17		
2007	18		
2006	19		
2005	20		
2004	21		
2003	22		
2002	23		
2001	24		
2000	25		
1999	26		
1998	27		
1997	28		
1996	29		
1995	30		
SU	М	1.0000	1.0000

NRPC Transit Bus Service Extension

User Guide **ACTIVITY ALLOCATIONS** (1) Enter the fuel type distribution of transit bus activity before and/or Update Emission Results Clear Inputs after completion (fractions for each distribution/column must sum to 1*). (2) Use the button below to fill the table with national defualt fuel type distributions if desired. These distributions are specific to the year input Fraction Before Fuel Type Fraction After on the "Transit Bus Service & Fleet Expansion" Tab. Gasoline Diesel Set to National Default Values Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) 20% Biodiesel (B20) 100% Biodiesel (B100) Dual Fuel (Natural Gas/Diesel) Hybrid Electric (HEV) 1.0000 1.0000 Hydraulic Hybrid (HHV) Battery Electric (BEV) Hydrogen Fuel Cell (FCV) SUM 1.0000 1.0000

NRPC Transit Bus Service Extension

ACTIVITY ALLOCATIONS

User Guide

(1) Enter the road type distribution of transit bus activity before and/or after completion (fractions for each distribution/column must sum to 1*).

(2) Use the button below to fill the table with national defualt road type distributions if desired. These distributions are specific to the year input on the "Transit Bus Service & Fleet Expansion" Tab and shown below.

Set to National Default Values

Update Emission Results

Clear Inputs

Road Type	Fraction Before	Fraction After
Rural Restricted		
Rural Unrestricted		
Urban Restricted		
Urban Unrestricted	1.0000	1.0000
SUM	1.0000	1.0000

NRPC Transit Bus Service Extension

ОИТРИТ	Calculate Outp
141,960 24,960 524,160	Miles Trips Miles
Pollutant	Total kg/day
Carbon Monoxide (CO) Particulate Matter <2.5 μm (PM _{2.5})	4.655 -0.012
Particulate Matter <10 µm (PM ₁₀)	-0.123 -1.418
Volatile Organic Compounds (VOC)	0.071
Carbon Dioxide (CO ₂)	683.892
Carbon Dioxide Equivalents (CO ₂ e) Total Energy Consumption (MMBTU)	686.513 9.011
	141,960 24,960 524,160 Pollutant Carbon Monoxide (CO) Particulate Matter <2.5 μm (PM _{2.5}) Particulate Matter <10 μm (PM ₁₀) Nitrogen Oxide (NOx) Volatile Organic Compounds (VOC) Carbon Dioxide (CO ₂) Carbon Dioxide Equivalents (CO ₂ e)

WILTONPedestrian Bridge

WILTONPedestrian Bridge

WILTON

Bicycle and Pedestrian Improvements This calculator will estimate the reduction in emissions resulting from improvements to bicycle and pedestrian infrastructure and associated mode shift from passenger vehicles to bicycling or walking, including but not limited to sidewalks, dedicated bicycle infrastructure, improved wayfinding, mid-block crossing installations, bike share systems, and bike parking improvements. User Guide INPUT Reset Interface (1) What is your project evaluation year? 2025 (2) Estimate the shift in daily motorized passenger vehicle trips to non-motorized travel due to the bicycle and pedestrian project. Daily Passenger Vehicle Trips Before After Change 100 100 (3a) Select the data type used for entering the typical one-way trip distance of passenger vehicles below: Trip Distance Source <- Fill National Values Average (3b) If you selected "Average" above, enter the typical one-way trip distance. If you selected "Distribution" above, enter the typical distribution of one-way trip distances Typical Trip Distribution of Trip Distances (daily fraction per Distance (miles $1 \le x < 2$ $2 \le x < 3$ $3 \le x < 4$ $4 \le x \le 5$ x < 1Sum 0.36

WILTONPedestrian Bridge

OUTPUT				
MISSION REDUCTION	ONS	<u> </u>		
	Pollutant	Total	*Units in kg/day unless otherwise noted	
	Carbon Monoxide (CO)	0.188		
	Particulate Matter <2.5 μm (PM _{2.5})	0.001		
	Particulate Matter <10 μm (PM ₁₀)	0.002		
	Nitrogen Oxide (NOx)	0.011		
	Volatile Organic Compounds (VOC)	0.010		
	Carbon Dioxide (CO ₂)	14.526		
	Carbon Dioxide Equivalent (CO ₂ e)	14.753		
	Total Energy Consumption	0.197		

Vincent Noga

Transportation/Planning Analyst (603) 417-6570 x6575 vincen@nashuarpc.org

Nashua Regional Planning Commission

Metropolitan Planning Organization
30 Temple Street, Suite 310, Nashua, NH 03060
nashuarpc.org | @NashuaRPC | facebook.com/nashuarpc

